l 學(xué)術(shù)論文 [1] Shiqi Guo#; Siliang Yan#; Kezhuo Liu; Changming Li; Liang Huang*; A strain-path dependent unified constitutive model of titanium alloy coupling coarse grain subdivision and recrystallization: application to multi-directional hot deformation, International Journal of Plasticity, 2025, 186:104248. (JCR/中科院1區(qū),塑性力學(xué)TOP1) [2] Si-liang Yan*; Xiao-li Zhang; Miao Meng; Xiaogang Fang; Spatio-temporal distribution characteristics of coupled field and formation mechanisms of forming defects in electrically-assisted press bending of Ti2AlNb-based alloy stiffened panel, Journal of Manufacturing Processes, 2024, 122: 21-35. (JCR/中科院1區(qū), 工程:制造TOP) [3] S.L. Yan; H. Yang*; H.W. Li**; X. Yao; A unified model for coupling constitutive behavior and micro-defects evolution of aluminum alloys under high-strain-rate deformation. International Journal of Plasticity, 2016, 85: 203-229. (JCR/中科院1區(qū),塑性力學(xué)TOP1) [4] Si-liang Yan*; Lei Hu; Ping Li**; Xiao-li Zhang; Xiu-ming Xie; Shi-jian Cheng; Non-uniform microstructure evolution rules and mechanisms of Ti55 alloy with initial basket-weave structure during electrically-assisted V bending, Materials Science and Engineering: A, 2024, 903: 146678. (JCR 1區(qū)TOP) [5] Si-liang Yan*; Lan-qing Yang; Lei Hu; Zi-long Liu; Miao Meng**; He-li Peng; Su-tong Yu; Ke-min Xue; Unconventional mechanical responses and mechanisms of Ti-6Al-4V sheet subjected to electrically-assisted cyclic loading-unloading: thermal and athermal effects, Materials Science and Engineering: A, 2024, 918: 147394. (JCR 1區(qū)TOP) [6] Yihui Yin; Shiqing Lu; Kun Song; Xia Huang; Jun Ding; Lusheng Wang*; Siliang Yan**; Atomic-scale insights into the strength and plasticity enhancement of Ni-based superalloys with refinement dispersion of precipitates, Chemical Physics Letters, 2024, 861(1): 141837. (JCR 1區(qū)) [7] Si-liang Yan*; Zi-long Liu; Yong-qiang Zhang; Xiao-li Zhang; Ke-min Xue; Miao Meng; Molecular dynamics study on the microstructure evolution of Ti2AlNb-based alloy subjected to tensile pre-strain and electric current treatment, Journal of Materials Science, 2025, 60: 300-315. (JCR 2區(qū)) [8] 嚴(yán)思梁*; 時(shí)迎賓; 張曉麗; 李萍**; 薛克敏; 預(yù)變形TA15合金脈沖電處理球化行為研究. 稀有金屬材料與工程, 2023,52 (5):1783-1790. (SCI) [9] 嚴(yán)思梁*; 胡磊; 張曉麗; 孟淼**; 薛克敏; 電磁成形中材料本構(gòu)模型研究進(jìn)展. 塑性工程學(xué)報(bào), 2023, 30 (6): 10-21. (??s稿) [10] Xiao-li Zhang; Si-liang Yan*; Miao Meng; Xiaogang Fang; Ping Li**; Macro-micro behaviors of Ti–22Al–26Nb alloy under near isothermal electrically-assisted tension, Materials Science and Engineering: A, 2023, 864: 144573. (JCR 1區(qū)TOP) [11] Xiao-li Zhang; Si-liang Yan*; Miao Meng; Ping Li**; Macro-micro behaviors of Ti–22Al–26Nb alloy during warm tension, Materials Science and Engineering: A, 2022, 850: 143580. (JCR 1區(qū)TOP) [12] Lusheng Wang; Siliang Yan*; Miao Meng; Kemin Xue; Ping Li**; Twin boundary-assisted improvement of radiation resistance of iron: Defect evolution, mechanical properties, and deformation mechanism, Journal of Nuclear Materials, 2022, 567: 153818. (JCR /中科院1區(qū),核材料TOP1) [13] S. Yan, H. Li, P. Li, K. Xue. Mechanisms and forming rules of large thin-walled aluminum alloy components in electromagnetic incremental forming. Procedia Manufacturing. 2018, 15: 1306-1313. (金屬成形領(lǐng)域著名國際會(huì)議) [14] M. Meng; S. Yan*; K. Xue; X. Fan**; Modeling of quasi-trimodal microstructures formation in large-size Ti-alloy parts under near-isothermal local loading forming process, Journal of Materials Processing Technology, 2022, 299: 117327 (JCR 1區(qū),成形制造TOP). [15] Hongwei Li; Siliang Yan*; Mei Zhan; Xin Zhang; Eddy current induced dynamic deformation behaviors of aluminum alloy during EMF: Modeling and quantitative characterization, Journal of Materials Processing Technology, 2019, 263(1): 423-439. (JCR 1區(qū),成形制造TOP) [16] S.L. Yan; H. Yang*; H.W. Li**; X. Yao; Variation of strain rate sensitivity of an aluminum alloy in a wide strain rate range: Mechanism analysis and modeling, Journal of Alloys and Compounds, 2016, 668A: 776-786. (JCR1區(qū)TOP) [17] S.L. Yan; H. Yang*; H.W. Li**; G.Y. Ren; Experimental study of macro–micro dynamic behaviors of 5A0X aluminum alloys in high velocity deformation, Materials Science and Engineering A, 2014, 598: 197-206. (JCR1區(qū)TOP) ● 授權(quán)專利 [1] 一種高溫鈦合金網(wǎng)格筋壁板的電輔助壓彎成形工藝方法與流程. ZL 202010782037.X(第1) [2] 一種用于鈦合金盤軸類件的復(fù)合成形模具及工藝. ZL 202410797560.8(第1) [3] 一種自適應(yīng)張緊式板材電脈沖處理設(shè)備及工藝. ZL 202410471428.8(第1) [4] 一種金屬板材電輔助成形極限測試裝置及方法. ZL 202410557558.3(第1) [5] 一種電輔助成形的點(diǎn)陣導(dǎo)電壓邊模具. ZL 202410206023.1(第1) [6] 一種電輔助成形的點(diǎn)陣導(dǎo)電壓邊工藝. ZL 202410205927.2(第1) [7] 一種帶雙側(cè)凸筋板料及其電輔助滾壓成型設(shè)備和工藝. ZL 202310596897.8(第1) [8] 一種雙性能盤熱模鍛-差溫壓扭復(fù)合成形方法及模具工裝. ZL 202310000460.3(第1) [9] 兩相/近α鈦合金電脈沖輔助改鍛工藝及工裝. ZL 202411245241.2(第1) [10] 一種金屬板材電輔助拉伸試驗(yàn)的非熱效應(yīng)解耦分析方法. ZL 202411158913.6(第1) [11] 一種電磁驅(qū)動(dòng)的板料表面沖擊強(qiáng)韌化工裝及其工藝. ZL 202411783985.X(第1) [12] 一種多級(jí)扭轉(zhuǎn)成形裝置及工藝. ZL 202411607601.9(第2) ● 教學(xué)成果與獎(jiǎng)勵(lì) [1] 全國高校教師教學(xué)創(chuàng)新大賽安徽賽區(qū)三等獎(jiǎng)(2023-R1、2024-R2) [2] 外圍買球app十大平臺(tái)青年教師教學(xué)基本功比賽二等獎(jiǎng)(2017、2021) [3] 安徽省大學(xué)生創(chuàng)新大賽總決賽創(chuàng)新創(chuàng)業(yè)導(dǎo)師(2024) [4] 近三年指導(dǎo)學(xué)生獲大創(chuàng)賽(互聯(lián)網(wǎng)+)省級(jí)金、銀獎(jiǎng)各1項(xiàng),校賽金獎(jiǎng)5項(xiàng),中國青年創(chuàng)青春大賽(科技創(chuàng)新專項(xiàng))國賽優(yōu)秀獎(jiǎng)1項(xiàng),合工大智能杯創(chuàng)新創(chuàng)業(yè)大賽大創(chuàng)組三等獎(jiǎng)等 ● 科研獲獎(jiǎng) [1] 多時(shí)空強(qiáng)磁場輔助極限成形理論與方法,中國材料研究學(xué)會(huì)科學(xué)技術(shù)獎(jiǎng)(基礎(chǔ)研究)二等獎(jiǎng),2024(排名2/4) [2] 多能場塑性成形的多尺度變形機(jī)制與協(xié)同調(diào)控,陜西省自然科學(xué)一等獎(jiǎng),2020(排名6/6) |